
We have developed a recommender system, specifically for recommending restaurants
based on many food characteristics, in Prolog. The certain approach we took towards the task
and the programming language we use to write our conceptual model has had varying effects on
our end result including: how well it works, limitations, and usefulness.

The model we have constructed is very quick and accurate at parsing out the information
given by the user, assuming it's in a standardized form. The way we have developed the parsing
section of our code is by making it resemble human speech, the ideal input would be something
someone would actually respond with when asked the question what they would like for dinner;
“I would like burgers” as an example response and proper formatting of an input. This
information will then be broken down into different parts, with the most important part, nouns
being checked against our set of ‘known foods’.

Another thing the system we set up does well is given an objectively best option based on
the query we have. After we parse the input we then find the closest match based on their input.
We refine and narrow in on a certain restaurant after the first iteration based on more information
the user provides; normally this includes getting the desired price or method of getting the food
to help better our current belief. A great thing about the way our code is structured is that it is
easy to add restaurants, food items, and even food categories into the preexisting knowledge
base. This is an important detail that helps mitigate a minor flaw with our current system.

This issue is that we have a small array of restaurants, at least compared to the multitude
of restaurants that could be included; however, the small list is varied enough to result in one
restaurant for each possible outcome. This isn't a tricky problem to fix, we had this in mind and
made sure it is incredibly easy to add or remove restaurants to better fit an individual's location
and subsequent options. A smaller thing is each restaurant is only related with one ‘type’ of food,
for instance, McDonald’s has ‘burgers’ as its specific type of food even though it has other types
of food that are in our knowledge base like ‘chicken’.

Probably the largest drawback as of now is that we only keep a memory of 2 terms and
this is erased upon each rerun. An example of a memory of two terms being an issue is that
someone states they want ‘burgers and chicken’ then they state they also want ‘rice’, the ‘burger’
will be deleted and the user will be switched in the Chinese food category, “rice and chicken”.
We determined this isn't a problem immediately with the next belief revision as the user probably
would want to leave the American category. However, for all intents and purposes, the user never
was in the American category according to our knowledge. A thing we wish we could change but
since we are using Prolog it is very difficult to implement is remembering a user's past
preferences; this would help us make better beliefs initially without a user having to repeatedly
type that they prefer cheap food, for instance, if they always prefer cheaper dining options.

A limitation occurs in our output to the user, we list the number one option to the user.
We have thought about and tested the idea of listing the top 3 restaurant options to the user. We
decided against it because based on the number of restaurants we have in the system some weird,
wildly inaccurate recommendations could sneak into third place or even second place if not
enough information was provided. Contrarily, if two restaurants share the exact same foods,



dining options, and price only one restaurant will be displayed. This currently isn't a problem
since these perfect overlaps are uncommon and none are currently present in our set.

We have developed a conceptual model that aims to solve a problem many people
run into daily. Hopefully, if the restaurants are accurate enough for the user, our model will fit all
criteria of the definition of ‘Conceptual Model’: describing how people's thoughts and
perceptions influence the way they feel and behave. We take the user’s preferences and then find
the right options for them, which is perfect for situations when users want to try something new,
can't decide between a few options, or maybe just forgot about a restaurant. Our goal is to
influence people and help them with their decision-making, and we feel that in the right situation
we have accomplished this and made deciding where to eat just a little bit easier.


